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HEAT TRANSFER TO LIQUID METALS FLOWING PAST 

SPHERES AND ELLIPTICAL-ROD BUNDLES* 
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(Received 11 March 1964 and in revised form 31 August 1964) 

Abstract-Theoretical Nusselt numbers have been derived for the cases of heat transfer to liquid 
metals flowing past a single sphere, and past an elliptical rod (solitary or one inside a bundle of elliptical 
rods). The analyses are based on the usual assumptions associated with inviscid potential flow [6, 91. 

The normalized hydrodynamic potential drop, &/(a + b), which appears in the expression for the 
Nusselt number for elliptical-rod bundles was analytically evaluated using the mathematical function of 
Howland and McMullen [S] and by applying the principles of conformal transformation. It was 
found that the numerical values of the corresponding parameter, &/D, for flow through circular-rod 

bundles were applicable here, provided that certain changes in notation were made. 
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NOMENCLATURE 

constants; 
coefficients in equation (52); 
heat capacity [Btu/lb degF]; 
diameter of a sphere [ft]; 
the complete elliptic integral of 
the second kind; 
as defined by equation (51) ; 
a constant; 
over-all Nusselt number, 2bhD/k, 
for an elliptical rod, and ho, Dl/k 
for a sphere, dimensionless; 
local Nusselt number, 2bh/k, 
dimensionless; 
over-all Nusselt number, 2bht/k 
for an elliptical rod, and htDl/k 
for a sphere, dimensionless ; 
an integer; 
pitch [ft] ; 
over-all Peclet number, 2bpC 
V/k for an elliptical rod, and 
pC VDl/k for a sphere, dimen- 
sionless; 
over-all Peclet number, 2bpC 
V,,,/k, dimensionless; 
radius of a circle [ft] ; 

* This work was performed under the auspices of the 
U.S. Atomic Energy Commission. 
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a, b, 

Reynolds number, 2bVplp for 
an elliptical rod, and DlVp/p 
for a sphere, dimensionless; 
Reynolds number based on Vm, 
Dl Vmp/p, dimensionless; 
temperature [OF] ; 
a constant temperature [“F] ; 
temperature excess [degF] ; 
temperature excess on the sur- 
face of a sphere [degF] ; 
average temperature excess on 
the surface of a sphere [degF] ; 
a constant temperature excess 
WegFl ; 
uniform upstream temperature 
t”Fl; 
average temperature excess 

[de@1 ; 
uniform upstream fluid velocity 
W/h1 ; 
mean cross sectional velocity, 
defined in reference [ 1 l] [ft/h] ; 
shell-side fluid velocity across 
tube bank and based on mini- 
mum flow area [ft/h] ; 
complex function as defined by 
equation (53); 
major and minor axis of an 
ellipse [ft] ; 
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= $qa2 - b2); 
eccentricity of an ellipse, c/a; 

= 1 - erf x = 1/n J e-aL dS; 1: 

Greek symbols 
r, 

?’ 
% 

gamma function; 
as defined by equation (11); 
E + iv, complex function ; 
imaginary part of the complex 
function 5, or angle measured 

local heat-transfer coefficient in 
rectangular coordinates 

[Btu/ft2 h degF] ; 
average heat-transfer coefficient 
for a sphere, = (l/&r:) JJs h ds 
where s is surface area 

[Btu/ft2 h degF]; 
local heat-transfer coefficient in 
elliptic coordinates 

[Btu/ft2 h degF] ; 
local heat-transfer coefficient in 
I#, I/J coordinates [Btujfts h degF] ; 
average heat-transfer coefficient 
in elliptic coordinates 

[Btu/ft2 h degF] ; 
average heat-transfer coefficient 
in rectangular coordinates 

[Btu/ft2 h degF] ; 
= d-1; 
thermal conductivity 

from the front stagnation 
[degree] ; 
angle measured from the 
stagnation point of a 
[degree] ; 

point 

front 
circle 

thermal diffusivity [ft2/h] ; 
(a + b)/2P or Dj2P; 
viscosity of fluid [lb/h ft]; 
real part of the complex 
tion ; 
= 3.1416; 

P9 density of fluid [lbJft3]; 
hydrodynamic potential 
tion; 

func- 

an integer ; 

[Btu/ft h degF]; 

total rate of heat flow from the 
entire surface of a sphere 

[BWhl ; 

hydrodynamic potential on the 
surface of an elliptical cylinder; 
unit hydrodynamic potential at 
the rear stagnation point of an 
elliptical or circular cylinder; 
unit hydrodynamic potential, 
@l-V; 
coordinate variable in spherical 
coordinate; 
hydrodynamic stream function ; 
unit hydrodynamic stream func- 
tion, Y/- V. 

rate of heat flow per unit length 
of elliptic cylinder perpendicular 
to the direction of flow 

INTRODUCTION 

[Btu/ft h]; 
surface heat flux [Btu/ft2 h] ; 
radial distance [ft] ; 
radius of a sphere [ft] ; 
arc length of an ellipse in 
rectangular coordinates [ft] ; 
arc length of a circle [ft] ; 
arc length of an ellipse in elliptic 
coordinates [ft] ; 
velocity components in r and 0 
directions; 
velocity components in 5 and 7 
directions; 

THEORETICAL Nusselt numbers for heat transfer 
to liquid metals in cross-flow through circular- 
rod bundles have been found by the author [9] 
to agree well with existing experimental results. 
In that study, the assumption of inviscid poten- 
tial flow was successfully employed. The 
purpose of this study was to extend the analysis 
to include the cases of liquid metal flow past a 
single sphere and past an elliptical rod (solitary 
or one inside a bundle of elliptical rods). 
Simplifying assumptions imposed on the con- 
tinuity, momentum and energy equations were 
essentially the same as those used in the previous 
analysis [9]. 

complex potential, @ + iY; It will be shown that Boussinesq’s transforma- 
distance coordinates [ft]; tion [2], which has been extensively used to 



HEAT TRANSFER TO LIQUID METALS 305 

analyse beat-transfer problems in potential flow 
around a circular cylinder, can also be utilized 
to analyse two-dimensional heat transfer in flow 
past a sphere for a low Prandtl number fluid. To 
the author’s knowledge, no such attempt has 
ever been made. For normal cross-flow of liquid 
metals past an elliptical-rod, it was found that 
the Nusselt numbers bear a certain relationship 
to those for the case in which the rods are cir- 
cular. The average Nusselt number increases as 
the eccentricity of the ellipse decreases; and, at 
the limit when the eccentricity becomes zero, 
the Nusselt numbers reduce to those for the 
case of normal flow past a single circular rod or 
through a bundle of circular rods. 

The theoretical expression for the parameter, 
&/(a + 6), which appears in the Nusselt numbers 
for rod bundles was obtained from the results 
for circular rods by use of conjugate functions. 
In a previous paper [9], the corresponding para- 
meter, #Q/D, for circular rods was evaluated 
analytically, using the mathematical functions of 
Howland and McMullen [S]. It will be shown that 
the computational results for +1/D which were 
presented in the previous paper are applicable 
to the evaluation of &/(a + b) for normal cross- 
flow through elliptic-rod bundles. It is only 
necessary to change #q/D to &/(a + b), and 
replace D/2P by (a + b)/2P. 

FLOW PAST A SINGLE SPHERE 

Liquid flow behavior past single spheres is 
relatively well understood. The transition from a 
laminar boundary layer to a turbulent one occurs 
[5] at a critical Reynolds number of N 2 to 
4 x 105. This transition causes an increase in 
the angle between the forward stagnation point 
and the point of separation. For liquid metals, 
eddy transport of heat does not become signi- 
ficant until Reynolds numbers, considerably 
above the critical value, are reached. Even in the 
wake region where eddy motion predominates, 
the high thermal conductivlties of liquid metals 
can eclipse the effect of eddy heat transport at 
moderately high Reynolds numbers. This has 
been observed experimentally for cross-flow 
through rod bundles by Hoe et al. [7] using 
mercury, and more recently by Borishanskii 
et al. [I] using liquid sodium. Both of these 
studies showed that the local coefficient decreased 

to a minimum as the rear stagnation point is 
approached. For flow of liquid metals past a 
single sphere or elliptical cylinders, a similar 
situation undoubtedly prevails, although it has 
not yet been experimentally confirmed. 

Under the assumptions made [9], the energy 
equation in spherical coordinates can be written 
as 

1 a i?T ___ - 
r2 sin I3 88 C )I sin 0 - 

ae (1) 

The coordinate variables are as illustrated in 
Fig. 1. For flow around a sphere, two dimen- 
sional description of both temperature and 

I II 

FIG. 1. Coordinate variables in the spherical coordinate. 

velocity fields is sufficient since aT/a+o = ST/ 
a# = 0, due to geometrical symmetry. The 
continuity and momentum equations can thus 
be replaced by the two-dimensional Laplace 
equation : 
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a aY ( 1 1 a aY 
2; r2 ar + - - ~~ sm 0 - = 0 (2-l) 

sin 0 ae i 1 a0 

where the r and 0 velocity components are 
related to Y and @ by 

and 

1 aul adi *Jr = - - = _ ..- 
r 819 ar (3-l) 

W 1 a@ 
'O= ai = - i ae (3-2) 

The form of equations (1) and (2) suggests that 
Boussinesq’s transformation of independent 
variables [2] is applicable to the solution of this 
two-dimensional problem. In effect, this trans- 
formation causes the circle obtained by project- 
ing a sphere perpendicularly on the x-y plane 
to be mapped into a line segment. Manipulation 
of the problem for flow past a sphere differs 
from that for flow past a cylinder in two ways. 
First, the two-dimensional stream function and 
the velocity potential for flow past a sphere 
differ from those for flow past cylinders. They 
are given [lo] as, 

and 

Y = : Vu2 sin2 0 [I - (r$r3J] (4) 

Q, = V r cos 0 + 5 $‘A 
i 

: 

i 
(5) 

Secondly, it is obvious that a cylinder has an 
identical circular cross section everywhere when 
cut by a horizontal plane parallel to the x-y 
plane. The circumferential temperature distribu- 
tion obtained by solving the differential equa- 
tion, resulting from the Boussinesq’s transfor- 
mation, therefore remains unchanged along the 
surface of the cylinder in the z direction. That 
this is not the case for the sphere is obvious. 
Instead, a sphere can be pictured as being formed 
by revolving the circle about the x-axis (in the 
40 direction). The temperature distribution over 
the entire surface of the sphere can thus be 
easily visualized once the temperature along the 

circumference of the circle is known by solving 
the differential equation. Thus, applying Bous- 
sinesq’s transformation of independent variables, 
neglecting i~2T/tS$2 compared to tt2T/$F, and 
then changing the temperature variable by 
letting T’ = T -- Ti, equations (1) and (2) can, 
as before [9], be simplified to 

i,T’ K ii”T’ 
_~_ _~ 

&p v ap (6) 

From equation (5), the expression for 4 can be 
written as 

+ = 0.7501( I -- cos l9) (5)’ 

Derivation of Nusselt numbers corresponding 
to cosine-series temperature distribution on the 
surface of a sphere is illustrated in the following. 
Results for other cases are summarized in 
Table 1. 

Table I. Nusselt numbers far flow past a single sphere 

Thermal condition on the 
surface of a sphere 

_--___ 

Nusselt number 

Uniform surface temperature N/I,, = 0.921 Pe’i- 
_~_____~___-/__________ 
Uniform surface heat flux I Nut = 1.085 Pells 

Nu,, == 1.128 Pe’l’ 
_____________ ~________ 

Cosine surface temperature NI/~ = 1.228 Pe’l’ 
(Nm 1) ~ N/c,, mm I.843 PC!” 

s 
T,$’ c A,,( I ~ cos 0)” 

1 

T,’ =m TI exp [KI( I cos S)] Nut = 1.274 Pella 
(Kl ~ I) N/r,, 5 I.495 PP’!~ 

If the temperature excess on the surface of a 
sphere varies in the 0 direction in a manner 
expressible by the equation 

then, combining equation (7) and equation (5)’ 
gives the variation of temperature excess as a 
function of 4, i.e. 

T; = 2 A,(+/O*75D#’ (8) 
?l:l 
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The solution of equation (6) corresponding to a 
surface temperature variation given by equa- 
tion (8) is [3], 

From this equation, the surface heat flux as a 
function of 4 can be obtained as 

where 

x 2 .4J?&/0*75D1)” (10) 
1L = 1 

r = rcn-tl> 
n f@ + 4) 

(11) 

The local heat-transfer coefficient, therefore, 
becomes 

This particular type of temperature distribution 
was considered for the case of circular cylinders 
in the previous analysis [9]. In this case, the local 
heat-transfer coefficient, from equation (13), 
becomes 

and the average heat-transfer coefficient can be 
calculated as 

(16) 

Consequently, 

To obtain the expression for Nut, the total heat 
flux over the entire surface of the sphere is first 
obtained. Thus, 

Since 

the expression for the local Nusselt number can 
be written 

Nu(%) = 

(2/3)Pe112 (1 -t cos 0)1/z 2 A,r, (1 - cos O)n 
la-1 -....______-_ - _-__- 

5 A%(1 - cos B)n 
n=1 

(14) 

For a special case when iV = I, the distribution 
of surface temperature excess is from equation 
(7k 

T,(B) = Arfl - cos 0) (15) 

?z ?i 

ss (1 - cos @)fs~-r)‘e sin 0 d&J d#e 

0 0 

The average temperature excess on the surface 
of the sphere is 
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Hence, the expression for Nut finally becomes 

~1qtots1 

n-i 

For the particular case of N = 1, equation (20) 
reduces to 

Nut = 1.228 Peliz (21) 
Owing to the assumptions made, the equations 

derived so far may be expected to apply only to 
fluids having very small Prandtl number, such 
as liquid metals, and for Reynolds numbers 
below say 5 x 105. It is not possible, at the 
present time, to compare these equations with 
any experimental results, since, to the author’s 
knowledge, they are not available. Recently, 
Vliet and Leppert [l l] reported some experi- 
mental results on convection heat transfer to 
water from an isothermal sphere. Their experi- 
mental correlation, based on negligible fluid 
property variation, is plotted as the dashed line 
in Fig. 2. The equation from Table 1, for uniform 

surface temperature, is also plotted in this figure. 
Although water has a higher Prandtl number 
compared with liquid metals, certain qualitative 
conclusions can be drawn from this comparison. 
At relatively low Reynolds numbers, the equa- 
tion predicts Nusselt numbers which differ 
considerably from the experimental measure- 
ments for water. This indicates that viscous 
effects are, in fact, not negligible for ordinary 
fluids, and it also reveals the well known trend 
that slug flow analyses generally overpredict 
heat transfer relative to laminar flow. As the 
Reynolds number is increased, however, predic- 
tion by the equation tends to agree more closely 
with the experimental results for water. The 
comparatively rapid increase of the empirical 
Nusselt number is presumably caused by the 
fact that the effect of wake flow becomes im- 
portant at high Reynolds number. 

FLOW PAST AN ELLIPTICAL ROD OR 
THROUGH ELLIPTICAL-ROD BUNDLES 

The flow field or temperature field around an 
elliptical rod is most conveniently described in 
terms of elliptic cylindrical coordinates. In 
addition to the assumptions [9] made, it is further 
assumed that for an elliptical rod located inside 
the bundle, the distribution of hydrodynamic 

IO3 I I I Illill I I I IlllL 

- - EQUATION IN TABLE I 

_ ---- f!4upr-o’s =2.7 + 0.12 ~~$66 4 
(EMPIRICAL CORRELATION FOR WATER, _ 
BY VLIET B LEPPERT) 

IO I I I I11111 I I lll1/1 

IO3 IO’ IO5 
Re, 

FIG. 2. Plots of Re, against NuPr-6.3. 
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potential around the surface of the rod is of the 
cosine type in terms of elliptic cylindrical coor- 
dinates. Justification of this assumption will be 
given in a later section. Under these assumptions 
the energy equation in terms of elliptic cylindrical 
coordinates can be written as 

x [?_$+$I. (22) 

The equation of continuity and the momentum 
equation can be combined and replaced by the 
Laplace equation. If the potential and stream 
functions in elliptical coordinates are defined by : 

1 aY 
" = a(sinh2 6 + sin2 7) ?%t 

--I a@ 
a d(sinh2 E + sin2 7) a7 (23) 

and 

-1 ay/ "[ = ~~_ -_ ~~__. 
a d(smh2 5 + sm2 7) 87 

-1 
= ?!ff? (24) 

a d(sinhs 5 + sin2 7) a,$ ’ 

then, 

a!P a@ 
z=-5’ (25) 

aY a@ 
a7 at (26) 

and therefore the two-dimensional Laplace’s 
equation retains the form: 

a2Y ac+g=O 
or 

aw s+a;=o 

(27) 

(28) 

It is not difficult to show that Boussinesq’s 
transformation (1) is also valid for elliptical co- 
ordinates. Thus, equation (6) remains valid for 
this case. 

In the following, a derivation of Nusselt 
number corresponding to the case of a constant 
temperature at the wall of an elliptical-rod (for 
flow past both a solitary elliptical-rod and one 
inside a bundle of elliptical rods) is presented. 
Results for other cases may be found in Table 2. 

Table 2. Nusselt numbers for flow past an elliptical-rod 

Thermal condition on the surface 
of an elliptical-rod 

Nu number for flow past a solitary Nu number for flow past an 
elliptical-rod elliptical-rod inside a bundle 

of elliptical-rods 
--- 

Uniform surface temperature Nuu = 1 .I28 F(e)Pe”* l/2 

where F(e) is given by equation (51) F(e)Pe112 

Uniform surface heat flux Nut = 1.272 F(e)kW2 
l/2 

Nut = 090 & 
( 

F(e)Pe112 

NUD = l-489 F(e)Pel12 

Cosine surface temperature 
Ta’ = Al(l - cos 0) 

Nut = I.505 F(e)Pel/2 l/2 
F(e)&‘/2 

NUD = 2.258 F(e)Pell” 
112 

F(e)Pel/z 
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a. Solitary elliptical rod 
The solution to equation (6) which corresponds 

to a constant temperature, T;, on the surface of 
the elliptical rod is given [3] as, 

hence, 

I?“(l#J) = (PC Vk/Tr+)r’s (30) 

Since the above heat-transfer coefficient, h”(4), 
is based upon a unit increment $I on the surface 
of a flat plate, it is necessary to convert it to one 
based upon a unit increment on the surface of 
the ellipse. Let h’(7) be the heat-transfer coeffi- 
cient based upon a unit area on the surface of 
ellipse in elliptical coordinates, then 

h’(T) = h”(4) ;$ (31) 

The complex potential for flow around a single 
elliptical cylinder is given in terms of elliptical 
coordinates as 

w = @ + iY = V(a + 6) cash (5 - 50) (32) 

where 

5 = t + irl. 

From equation (32), the potential function can 
be readily found as 

@ = V(a + b) cash (5 - 5‘0) cos 7 

On the surface of an ellipse, 5 = &I, therefore, 
the distribution of hydrodynamic potential is 
given by 

@ = V(a $- 6) cos 7 (33) 

For the present purpose, the potential function 
around a single elliptical cylinder is written as 

4 = (a + b)(l - cos 7) (34) 

The arc length, s’, along the ellipse, E = 60, 
can be expressed in elliptical coordinates as 
s’ = 507. Therefore, d+/ds’ = (a + b) sin v/50, 

and from equation (31), 

h’($ _ d(a + b) - 5. J(qq (1 + cos ?$‘2 

In order to obtain the expression for the Nusselt 
number, it is necessary to convert h’ to rectangu- 
lar coordinates. The two types of coordinate 
systems are related by 

s 1 c cash 5 cos 77 (36) 

and 

y == c sinh E sin 7 (37) 

On the surface of an ellipse, f = (0, therefore, 

x = c cash 50 cos v = a cos 17 

y = c sinh 50 sin 7 = b sin 11 

The incremental distance, ds, on the surface of 
an ellipse in rectangular coordinates is 

ds = z/[(dx)2 + (dy)2] 

=z y’(a2 sin’ 17 + b2 cosa 7) d7 (38) 

Let ds’ be the incremental distance on the sur- 
face of the ellipse in elliptical coordinates, then 

ds’ 
144 = 64 ds = h’h)to $ (39) 

Hence, combining equations (35), (38), and (39) 
gives 

h(T) = z/(a + b) ,/(E?F) 

1 + cos v li? 

4 sins 7 + b2 co9 7 (40) 

Accordingly, the expression for the local Nusselt 
number, NUL, can be written as 

NUL(rl) = 

1:2 

a2 sin2 7 + b2 cos2 7, (41) 

If a and 6, the major and minor axes of an 
ellipse, are written in terms of the eccentricity, 
e, then, since e = c/a = .\/(a2 - b2)/a, equation 
(41) can be written ‘in equivalent form: 

(35) (Pe)1’2(l + cos q)tPA (42) 
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( I ) e = 0.0 
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15)e=0.9 
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FIG. 3. Local Nusselt number as a function of 7, the angle measured from the forward stagnation point. 

In Fig. 3 the local Nusselt number, expressed as 
Nu~Pe-l/~, is plotted against the angle measured 
from the forward stagnation point. It can be 
observed from the plots that as the eccentricity 
increases and approaches unity, the local 
Nusselt number starts to decrease more and more 
rapidly in the front region (7 = 0 to - 60”) of 
the ellipse. Drake et al. [4] have experimentally 
measured local Nusselt numbers for flow of air 
past an elliptical-rod having eccentricity of 
0.943 (a: b = 3 : 1). Their results also show the 
trend of the rapid decrease of local Nusselt 
number in the front region of the elliptical 
cylinder. 

To obtain the average Nusselt number, NUD, 
the average heat-transfer coefficient in elliptic 
cylindrical coordinates is first obtained. Thus : 

and the average Nusselt number, NUD, becomes 

NUD = 1*128(Pe) l/2 (1 +~wJ!a)L’Z (45) 

If a = b, the above equation reduces to 

NUO = 1 .015(Pe)1’2 (46) 

which is the Nusselt number for flow past a 
circular cylinder [6]; and, if b = 0, it reduces to 

NUO = 1*128(Pe)l’s (46)’ 

which is the Nusselt number for flow past a flat 
plate [6]. In the latter case, the characteristic 
length inside the expression of NUO and Pe has 
been changed to the length of the flat plate. 

If eccentricity, e, is used, equation (45) can 
also be written in an alternative form: 

To convert the above expression to one in rec- A circle is an ellipse of zero eccentricity. It is 

tangular coordinates, it is noted that apparent that equation (47) reduces to equation 
(46) if e is zero. 

T&$I’ = 2aE(K)h 
b. An elliptical rod located in the interior of an 

where K = d[l - (b/a)21 and E(K) is the ellipt&rod bundle 
complete elliptic integral of the second kind. The foregoing analysis can be readily ex- 
Accordingly, tended to obtain the expression for Nusselt 
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numbers for the case of flow past an elliptical-rod 
located inside a bundle of elliptical-rods. This is 
illustrated in the following. 

From equation (29), the rate of heat flow from 
the entire surface of the elliptical rod can be 
obtained as : 

where $1 represents the value of (F, at the rear 
stagnation point of an elliptical-rod. Analytical 
evaluation of $1 will be discussed in the next 
section. From the above equation, the heat- 
transfer coefficient can be written as 

rod bundles. This term represents the difference 
in hydrodynamic potential between the front and 
rear stagnation points of an elliptical rod located 
inside a bundle, in terms of elliptical coordinates. 
The analytical evaluation of this parameter will 
now be given by applying the principles of con- 
formal transformation and by using conjugate 
functions. 

In the previous paper [9], it was shown that 
the potential field around a circular cylinder 
located in the interior of a bundle could be 
calculated analytically, using the mathematical 
functions of Howland and McMullen [8]. The 
potential field around the circular rod was found 
to be given by the expression : 

and, consequently, the Nusselt number, NUD, 
becomes : 

(49) 

If the Peclet number is based upon the velocity 
of fluid flowing through the minimum flowing 
area, equation (49) can also be written as: 

where 

Once again, it is not possible at the present 
time to compare the theoretical results presented 
in this paper with any experimental data, due 
to the lack of latter information. Confirmation of 
the results of this analysis has to rely upon future 
experimental work. 

c. Theoretical evaiuat~~n qf’ the parameter, 

In the expressions for the Nusselt number 
dd(a -k @I 

presented in the previous sections, a term, 
&/(a + b), appears in each of the equations for 

+ (r/R~)~“+l] sin (2n -t 1)0} - 2 {Bslzh-2n+i 
R = 1 

where h is D/2P, and the constants, Azn+l and 
Bzn, are as given in the previous paper. 

To calculate the potential field in terms of 
elhptical coordinates around an elliptical rod 
located inside a bundle, the following consecu- 
secutive conformal transformations are made: 

and 

z = Q [z + 2/(z2 - IS)] (53) 

z + d(z2 - ~2) = c(sinh 6 + co& 5) = ccc 

(56) 

z = c cash i = c cash (s: .-t $ (54) 

The first transfo~ation maps the group of 
circular cylinders defined by Howland and 
McMullen [8] into a group of elliptical cylinders. 
The second transformation changes the variables 
from rectangular coordinates to elliptical cylin- 
drical coordinates [lo]. From equation (54) it 
can be readily seen that: 

y’(z2 - c2) = c sinh I (55) 

and accordingly : 

z - dt.2” - c2> = c(cosh < - sinh 1) =- ee-c 

(57) 
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On an ellipse, E = 50, the major and minor axes 
of the ellipse, a and b, respectively, can be 
expressed by 

a == c cash &;, b = c sinh &I 

Therefore : 

(58) 

a + b = c(cosh 40 $ sinh to) = CC& (59) 

a - b = c(cosh ,$o - sinh 50) = ce-50 (60) 

The relationship between the original variables 
and the final transformed variables can be found 
by noting that Z = ret0 and then combining 
this expression with eqiations (53) and (56). 
Thus : 

Z = reiQ = 4 [z + +(z2 - c2)] 

= ?J ccc = (ceg/2)e6s (61) 

It is seen, therefore, that the two consecutive 
transformations cause the following transforma- 
tions of variables: 

r --f ceE/2 0 --f n (62) 

It is also noted that the circles, r = Ro, in the 
original rectangular coordinates are mapped 
into ellipses, 4 = 50. Therefore, from equations 
(62) and (59), one can write: 

RO -+ ceto/2 = (a + b)/2 (63) 

Since the solution to the Laplace equation, 

GYJ SW 
-@ + ayz = 0, (64) 

with the appropriate boundary conditions, is 
known to be [8, 91: 

Y- VRo 
( 

$ {A2n+1A-2n [(Ro/r)2a+1 
It=0 

- (r/Ro)2”+1] cos (2~ + 1)0) + 5 {B2nX-sn+l 
n=1 

[(Ro/r)2” - (r/Ro)2n] sin 2~13) 
) 

(65) 

the stream function for the flow around the 
elliptical rods in elliptical coordinates can be 
written as: 

Y/ = V(a + b) ngo[A2n+~X-2n sinh (2n + 1) 

(50 - E) cos (2n + l)~] +nzl[B2,X2n+1 sinh 

2n(fo - 5) sin 2nn] 
> 

(66) 

where h is now (a + b)/2P. From equation (66), 
it can be readily seen that on the surfaces of the 
ellipses, 5 = Eo, Y = 0. 

Similarly, the potential function for the flow 
around the elliptical rods can be found in terms 
of elliptical coordinates as : 

cc 

CD = V(u + b) x [A2n~1h-~~ cosh(2n + 1) 
n=o 

m 

(5 - Eo) sin (2n + l)q] - 2 [B2nh-2n+l cash 
12=1 

2n(5 - to) cos 2~~1 (67) 

The distribution of hydrodynamic potential 
on the surface of the elliptical rods can be ob- 
tained by letting 6 = to in equation (67). Thus: 

QS = V(u + b) 
1 

5 [Apntlh-2n sin (2n + I)71 
?L=O 

- g[Bznh-2"+1COS 2nq] 
n=l ! 

(68) 

and accordingly the difference in hydrodynamic 
potential between the forward and rear stagna- 
tion points of the elliptical cylinder can be ob- 
tained by forming the difference of Qs at 
7 = ~12 and r] = 3rr/2. Finally, this can be 
written as : 

m 

&/(a + b) = 2 CI (- I)n/tzn +,X-an (69) 
?h=O 

From the above equation, it can be seen that the 
final mathematical form for the parameter is 
identical to that for flow around circular 
cylinders. The only differences are that the term 
$1/D is replaced by &/(a + b), and h now 
stands for (a + b)/2P. 

In the previous paper [9], theoretical values of 
I&/D were presented as a function of A. These 
values are, therefore, still useful for finding 
&/(a + b), provided that the above changes are 
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FIG. 4. Plots of normalized hydrodynamic potential drop, $I/(c~ k h), vs ((1 h)/P. 

made. The plots of &/(a + 6) against (a + b)/P 
are shown in Fig. 4, for two different tube-bank 
geometries, i.e. the centers of the ellipses are 
arranged in square and equilateral triangular 
fashions. 

In deriving the Nusselt numbers for rod 
bundles, it was assumed that the distribution of 
hydrodynamic potential along the surface of an 
elliptical rod located in the interior of rod bundles 
can be expressed by a cosine function, in terms 
of elliptical coordinates. This assumption can be 
analytically justified by using equation (68). In 
the previous paper [9], similar justification was 
shown for flow through circular-rod bundles. 
Since equation (68) has an identical form to the 
corresponding equation for how around circular 
rods, Figs. 9 and 10 in the aforementioned 
reference [93 can now be interpreted as the plots 
of &/(a + b) against the angle measured from 
the forward stagnation point. It is thus seen 
that the said assumption is reasonable. 

SUMMARY 

(1) Analytical expressions for Nusselt numbers 
for liquid metals flowing past a single sphere, 
and past an elliptical rod (solitary or one inside 
a bundle) were obtained by assuming inviscid 
flow. For the elliptical rods, the Nusselt numbers 

were expressed as a function of the eccentricity 
of the ellipse. It was found that the Nusselt 
numbers bear constant relationship to those for 
cross-flow through circular-rod bundles, i.e. 

For a single rod: 

Nu,u(Pe) = Nuc,1(Pe) 

(1 ~~ e2) + 2/( 1 -- 

2 

For a rod inside a bundle: 

Nu,n[Pe, Ma -t h)] =- NkdPe, +1/D) 

(2) The parameter, +ii(a + b), which repre- 
sents the hydrodynamic potential drop in terms 
of elliptical coordinates is analytically obtained 
by using conjugate functions. It was found that 
the numerical results of +1/D presented in the 
previous paper are still applicable, provided that 
q5ljD is changed to &/(a + b) and D/2P to 
(a + W2P. 
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Resume-Les nombres de Nusselt theoriques ont CtC obtenus dans les cas du transport de chaleur 
dans des metaux liquides s’ecoulant le long dune sphere isolee, et le long d’une barre elliptique (isolee 
ou a I’interieur d’un faisceau de barres elliptiques). Les analyses sont basees sur les hypotheses habi- 
tuelles associees avec Gcoulement potential non-visqueux [6, 91. 

La chute de potentiel hydrodynamique normalis& &/(a + 6) qui apparalt dans l’expression du 
nombre de Nusselt pour des faisceaux de barres elliptiques a Ctt! evaluee analytiquement a I’aide de la 
fonction mathematique de Howland et McMullen [8] et en appliquant les principes de la transforma- 
tion conforme. On a trouve que les vaieurs numdriques du parametre correspondant, +1/D, pour 
l’ecoulement B travers des faisceaux de barres circulaires, s’appliquaient ici, pourvu que certains 

changements de notations soient faits. 

Z~m~fa~ng-For den W~rme~bergang an fliissige Metalle, die an einer einzigen Kugel und einem 
elliptischen Stab (Einzelstab oder Stab innerhalb eines Biindels von elliptischen Stlben) VorbeistrGmen, 
wurden theoretische Nusseltzahlen abgeleitet. Die Analysen beruhen auf den iiblichen Annahmen 
iiber eine nicht-zahigkeitsbehaftete Potentialstromung 16, 91. 

Der normalisierte hydrodynamische Potentialabfall &/(a -i_ b), der in dem Ausdruck der 
Nusseltzahl fur das Biindel elliptischer Stabe auftritt, wurde analytisch unter Verwendung der 
mathematischen Funktion von Howland und McMullen [8] und der Theorien der konformen 
Abbildung geschatzt. Es ergab sich, dass die numerischen Werte der entsprechenden Parameter +1/O 
fur die Stromung durch ein Btindel von Rundstlben hier angewandt werden durften, vorausgesetzt, 

dass gewisse Anderungen in den Bezeichnungen gemacht wurden. 

Hop~a~~aonaHHoe nafiemie rIi~po~~HaM~YecKor0 noT~II~~a~~a #l/(a + b), uoropoe BcTpe- 
YaeTCK B BbI$3aiKeHKK j?&KK YMCJIa HyCCeKbTa, On~CbIBa~meM IIMYIEK 3~~~nT~qeCK~IX CTep?HHeZi, 
BbIYKCJIeHO c nOMOmbK) MaTeMaTHYeCHOfi (PyKHHHK XayKt?HRa M MaKMajrKeHa c npHMerIeKHeM 
IIpKHHRIIOB KOH@OpMHbIX OTO6paHteHHti. HatQeHo, YTO YHCJIeHHhIe 3HaYeHKK COOTBeTCTByIo- 
nIero napaMeTpa (61/D RJ~R TeqeIrnR ‘Iepez qWXt KpyrnbIX CTepKrHeH IIpMMeHAMbI II II 

ARHHOM c.YvYao IIlHI ~~‘JIOIIHII, YTO RIIWeHbI Onl~f$7IeJIWHhIt? IlaMeHeHKK B 06ORHaYeHHK. 


